GLAST Balloon Flight Analysis - an Outline

Analysis Goals of the GLAST BFEM Balloon Flight

- 1. Demonstrate that we can find gamma rays in flight data from a GLAST tower, i.e show that event reconstruction works. This one is absolutely essential.
- 2. Demonstrate that the XGT-tagged events match the GEANT4 simulation flux, energies, directions
- 3. Re-confirm previous atmospheric gamma-ray measurements flux, energy spectrum, zenith angle distribution.
- 4. Verify efficiency of proposed L2T and L3T algorithms.

BFEM Analysis Roadmap - From Raw Bits to Scientific Results

Level 0 - Interpreting the bits - geometry and detector response

GEANT4 simulation

Event reconstruction

Detector geometry and materials
Expected signals from incident radiation data format/file structure, event display.

Validation - verify geometry, data definitions

BFEM Instrument

Detector geometry

Data stream definition/ data format /file structure, event display

Level 1 - Data Storage, Integrity, and Manipulation - data processing on raw ROOT files

Runs definition - by incident radiation type, distribution, trigger mode Database of runs Performance data - histograms, rates, triggering, etc.

Validation - compare tracks, efficiencies of subsystems, alignment

Runs definition - by BFEM trigger mode, time

Database of runs

Performance data - histograms, rates, livetime, triggering, scaling, offsets, etc. ★

Event reconstruction

Level 2 - Extraction of Instrument Response and Science Data - from reconstructed ROOT files

Screening/filters/cuts of event types (particles, photons, XGT tagged, unknown, etc.) ★

Derive response functions ★

Validation - compare efficiency of same screening in selecting event classes Screening/filters/cuts of event types (particles, photons, XGT tagged, unknown, etc.) ★

Produce identified-event data base ★

----- This is where the derived instrument parameters and flight data are turned over to the users

Response functions for different types of incident radiation ★ e.g. Effective area, PSF, ∆E/E vs. angle, energy, trigger mode for photons

Level 3 - Scientific Results

Calibration - use model to convert observed data to results

Flux, energies, tags, angular distribution of various types of radiation ★

★ - some areas where work is needed

What Needs Attention Now?

- Perform subsystem performance checks/calibration
 - TKR did more strips become hot during flight?
 - ACD what is the appropriate PHA cut for MIPs?
 - CAL what is a reasonable energy calibration?
- Encourage anyone interested in BFEM data to scan some flight events using an event display
- Adjust simulations to reproduce trigger rate iterative
- Develop effective screening methods (next slide) to categorize events - critical to finding the gamma rays
- Apply screening to simulations and flight data
 - Simulations give effective area
 - Flight data give numbers of gamma rays (and other particles)
- Use these results, along with live time, to compare with expected photon and particle fluxes

Approaches to Screening the Event Data

The Systematic Approach (like the flight data)

Kotani and others

The Empirical Approach

Use energy deposits and topologies to categorize events with simple rules

e.g. No ACD energy + inverted V track shape in TKR and CAL is probably a gamma ray

For this small data set, this method gives a useful "sanity check" on the data.

Lauben, Giebels

Who's Who in the GLAST BFEM Analysis World

Analysis Coordinator ("Czar") - Dave Thompson

Analysis Consultant - Eduardo do Couto e Silva

Definitions -largely done

Geometry - Tsunefumi Mizuno, Gary Godfrey

Data Format - JJ Russell

Data Validation - Dave Lauben, Scott Williams

Simulations

Tune Kamae

Tsunefumi Mizuno

Takanobu Handa

Michael Roterman

Sei Ogata

Hirofumi Mizushima

Heavy CR Analysis

NRL

XGT Analysis

Tune Kamae

Tsunefumi Mizuno others?

Subsystem Performance

ACD - Alex Moiseev

Tracker - Alicia Kavelaars?

Calorimeter - Eric Grove

XGT - Tsunefumi Mizuno

BIU - Michael Lovellette

GSE - Dave Lauben, Scott

Williams

On-board Software - done

JJ Russell

Tony Waite

Dan Wood

Bob Schaefer

Hadron Analysis

UCSC

Atmospheric Analysis

Dave Thompson, Dave Lauben, Dave Wren, others?

Data Management and Integrity

Karl Young, Tony Waite

Analysis Software Development

Lead - Richard Dubois

Data packaging - Heather Kelly

ROOT classes – Heather Kelly

Event reconstruction – Tracy Usher,

Leon Rochester

Event display - Gloria Spandre, Nick Lumb

Event cuts, screening, identification

Systematic - Taro Kotani, others? Empirical - Dave Lauben, Berrie

Giebels, others?

Other Analysis? Who?